海题库职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考(专升本) → 2025年06月15日成考专升本每日一练《高等数学一》

2025年06月15日成考专升本每日一练《高等数学一》

2025/06/15 作者:匿名 来源:本站整理

2025年成考专升本每日一练《高等数学一》6月15日专为备考2025年高等数学一考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、()。  

  • A:0
  • B:1
  • C:
  • D:π

答 案:C

2、设直线,则直线l()。

  • A:过原点且平行于x轴
  • B:不过原点但平行于x轴
  • C:过原点且垂直于x轴
  • D:不过原点但垂直于x轴

答 案:C

解 析:将原点(0,0,0)代入直线方程成等式,可知直线过原点(或由直线方程表示过原点的直线得出上述结论),直线的方向向量为(0,2,1),与x轴同方向的单位向量为(1,0,0),且(0,2,1)×(1,0,0)=0,可知所给直线与x轴垂直。

3、设y=f(x)在点x0的某邻域内可导,且=0,则点x0一定是()。

  • A:极大值点
  • B:极小值点
  • C:驻点
  • D:拐点

答 案:C

解 析:极值点是函数某段子区间的最值,一般在驻点或者不可导点取得;驻点是函数一阶导数为0的点对应的x值;拐点是凸曲线与凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点;综上所述,点x0为该函数的驻点。

主观题

1、求微分方程y'-=lnx满足初始条件=1的特解。

答 案:解:P(x)=,Q(x)=lnx,则所以=1代入y式,得C=1.故所求特解为

2、求曲线y=x2在点(a,a2)(a<1)的一条切线,使由该切线与x=0、x=1和y=x2所围图形的面积最小。

答 案:解:设所求切线的切点为(a,b),见下图,则b=a2,切线方程为y-b=2a(x-a),y=2ax-2a2+b=2ax-a2。设对应图形面积为A,则
,则,令。当a<时,f'(a)<0;当a>时,f'(a)>0,故为f(a)的最小值点,切线方程为:y=x-

3、求微分方程的通解.

答 案:解:对应齐次微分方程的特征方程为特征根为r=1(二重根)。齐次方程的通解为y=(C1+C2x)(C1,C2为任意常数)。
设原方程的特解为,代入原方程可得因此
故原方程的通解为

填空题

1、反常积分  

答 案:1

解 析:本题考查的知识点为反常积分,应依反常积分定义求解。  

2、=()。

答 案:2(e-1)

解 析:

3、设函数z=f(x,y)可微,(x0,y0)为其极值点,则()。

答 案:

解 析:由于z=f(x,y)可微,则偏导数必定存在,再由二元函数极值的必要条件可知,若点(x0,y0)为z=f(x,y)的极值点,且在点(x0,y0)处存在,则必有

简答题

1、求函数的单调区间和极值.  

答 案: 由表可知,函数的单调曾区间为(0,2);单调减区间为(-∞,0),(2,+∞) 极大值为,极小值为f(0)=0.

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论