海题库职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年04月23日成考高起点每日一练《数学(文史)》

2025年04月23日成考高起点每日一练《数学(文史)》

2025/04/23 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》4月23日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、设集合M={1,2,3,4,5},N={2,4,6},T={4,5,6}则(M∩T)∪N是()。  

  • A:{2,4,5,6}
  • B:{4,5,6}
  • C:{1,2,3,4,5,6}
  • D:{2,4,6}

答 案:A

2、已知△ABC中,已知AB=2,AC=BC=3,则∠B等于()。

  • A:
  • B:
  • C:
  • D:

答 案:C

3、甲坛有8个小球,乙坛有4个小球,所有小球颜色各不相同,现从甲坛中取2个小球,乙坛中取1个小球,则取出3个球的不同取法共有()。

  • A:224种
  • B:112种
  • C:32种
  • D:1320种

答 案:B

解 析:C8(2)×C4(1)=112(种)。  

4、()。

  • A:1
  • B:b
  • C:logab
  • D:logba

答 案:D

解 析:由已知,nlogba=logb(logba),logban=logb(logba), 所以an=logba。  

主观题

1、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度

答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm, 由题意得y-y0=kx,即y=kx+y0, 由已知条件得 解得k=0.2,y0=8. 所求函数关系式为y=0.2x+8,弹的原长为8CM  

2、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

3、已知等差数列{an}中,a1+a3+a5=6,a2+a4+a6=12,求{an}的首项与公差.  

答 案:因为{an}为等差数列,则

4、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。

答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得 m=因此A点坐标为 设B点坐标为

填空题

1、函数y=2x(x+1)在x=2处的切线方程是__________.  

答 案:10x-y-8=0

解 析:由函数y=2x(x+1) 知,y´=(2x2+2x)'=4x+2,则y´|x=2=10.又当x=2时,y=12,知此函数的切线过点(2,12),且斜率为10。则其切线方程为10(x-2)=y-12,即10x-y-8=0. 【考点指要】本题考查利用导数求曲线的切线方程,y=ƒ(x)在点P(x0,y0)处的导数值即为曲线y=ƒ(x)在该点处切线的斜率.

2、与已知直线7x+24y-5=0平行,且距离等于3的直线方程是______。  

答 案:7x+24y+70=0或7x+24y-80=0

解 析:设要求的直线方程为7x+24y+c=0, ∵直线7x+24y+c=0到直线7x+24y-5=0的距离等于3 ∴ ∴.C=70或-80. 故所求的直线方程为7x+24y+70=0或7x+24y-80=0

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论