2025年成考高起点每日一练《数学(文史)》4月22日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、设集合M={a,b,c,d},N=(a,b,c),则集合M∪N=()。
- A:{a,b,c}
- B:{d}
- C:{a,b,C,d}
- D:空集
答 案:C
2、已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为()
- A:
- B:
- C:
- D:
答 案:A
解 析:由已知条件知双曲线焦点在x轴上属于第一类标准式,又知c=5,2a=6, ∴a=3,∴所求双曲线的方程为
3、已知f(x)=ax2+b的图像经过点(1,2)且其反函数f-1(x)图像经过点(3,0),则函数f(x)的解析式是()。
- A:
- B:f(x)=-x2+3
- C:f(x)=3x2+2
- D:f(x)=x2+3
答 案:B
解 析:∵f(x)的反函数f-1(x)过点(3,0),所以f(x)又过点(3,0),所以有f(1)=2,
4、已知α为三角形的一个内角,且sinα+cosα=则α∈()。
- A:
- B:
- C:
- D:
答 案:C
解 析:由已知得
主观题
1、已知x+x-1=,求x2+x-2的值。
答 案:由已知,得
2、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。
答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x.
(Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2,
可得 m=
因此A点坐标为
设B点坐标为
3、设椭圆的中心是坐标原点,长袖在x轴上,离心率,已知点P(0,3/2)到椭圆上的点的最远距离是
,求椭圆的方程。
答 案:
4、设全集U=R,集合A={x|-5<x<5},B={x|0≤x≤7},求CUA∩B.
答 案:解:全集U=R,A={x|-5<x<5},B={X|0≤x≤7},因为CuA={x|x≤-5或x≥5},所以CuA∩B={x|x≤-5或x≥5}N{x|0≤x≤7}={x|5≤x≤7},如图1—10所示。
填空题
1、直线的倾斜角的度数为()
答 案:60°
解 析:由题意知直线的斜率为设直线的倾斜角为α,则tanα=
由0°≤α≤180°,故α=60°
2、九个学生期末考试的成绩分别为79 63 88 94 99 77 89 81 85这九个学生成绩的中位数为______。
答 案:85
解 析:本题主要考查的知识点为中位数. 将成绩按由小到大排列:63,77,79,81,85,88,89,94,99.因此中位数为85。
精彩评论