2025年成考高起点每日一练《数学(理)》4月18日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、函数y=x2—2x+6在区间(-∞,1)、(1,+∞)分别()。
- A:单调增加、单调减少
- B:单调减少、单调增加
- C:单调增加、单调增加
- D:单调减少、单调减少
答 案:B
解 析:方法一:用配方法把y=x2-2x+6配成完全平方式。 y=x2-2x+6=(x-1)2+5,开口向上的抛物线顶点坐标为(1,5),可得出单调区间。 方法二:用导数判定。y’=2x-2=2(x-1)
当x<1时,y’<0,单调减少;当x>1时,y>0,单调增加。
2、已知函数则f(3)等于()。
- A:
- B:1
- C:2
- D:
答 案:B
解 析:
3、过点(-2,2)与直线x+3y-5=0平行的直线是()
- A:x+3y-4=0
- B:3x+y+4=0
- C:x+3y+8=0
- D:3x-y+8=0
答 案:A
解 析:所求直线与x+3y-5=0平行,可设所求直线为x+3y+c=0,将点(一2,2)带入直线方程,故-2+3×2+c=0,解得c=-4,因此所求直线为线为x+3y-4=0.
4、将一颗骰子抛掷1次,到的点数为偶数的概率为
- A:
- B:
- C:
- D:
答 案:D
解 析:一颗骰子的点数分别为1,2,3,4,5,6,其中偶数与奇数各占一半,故抛掷1次,得到的点数为偶数的概率为
主观题
1、空间有四个点,如果其中任何三点不在同一直线上,可以确定几个平面?
答 案:根据公理,在所给定的四点中任取三点,可确定一个平面,由组合公式所以共可确定四个平面。
解 析:空间有n个点,如果其中任何三点不在同一直线上,可以确定个平面。
2、计算。
答 案:
3、设分别讨论x→0及x→1时f(x)的极限是否存在?
答 案:∴f(x)在x=0处极限不存在 同理f(x)在x=1处极限存在
4、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
填空题
1、函数(x∈R)的最小值为______。
答 案:-1
解 析:
2、函数的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有
故函数与x轴交于(1,0) 点,因此函数
与坐标轴的交点共有 2个.
精彩评论