海题库职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年04月13日成考高起点每日一练《数学(文史)》

2025年04月13日成考高起点每日一练《数学(文史)》

2025/04/13 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》4月13日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、如果点A(1,1)和B(2,4)关于直线y=kx+b对称,则k=()。  

  • A:-3
  • B:
  • C:
  • D:3

答 案:B

解 析:本题主要考查的知识点为两垂直直线斜率的关系。 直线AB的斜率为:点A、B关于直线y=kx+b对称,因此直线AB与其垂直,故3k=-1,得

2、已知成等差数列,且为方程的两个根,则的值为()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由根与系数的关系得由等差数列的性质得

3、函数y=sinx+cosx(x∈R)的最小正周期为()。

  • A:2π
  • B:π
  • C:
  • D:

答 案:A

解 析:

4、y=(2x2+3)(3x-2)的导数是( )

  • A:18x2-8x+9
  • B:6x2+9
  • C:12x2-8x
  • D:12x

答 案:A

解 析:y=(2x2+3)(3x-2)=6x3-4x2+9x-6,y´=18x2-8x+9.【考点指要】会用两个函数和、差的求导法则求多项式函数的导数,是近几年成人高考的常见题.

主观题

1、已知a,b,c成等比数列,x是a,b的等差中项,y是b,c的等差中项证明  

答 案: 考点 本题考查考生对等差中项和等比中项公式的理解及运用.

2、已知tan2θ=2tan2ψ+1,求cos2θ+sin2ψ的值。  

答 案:由已知,得

3、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

4、设全集U=R,集合A={x|-5<x<5},B={x|0≤x≤7},求CUA∩B.

答 案:解:全集U=R,A={x|-5<x<5},B={X|0≤x≤7},因为CuA={x|x≤-5或x≥5},所以CuA∩B={x|x≤-5或x≥5}N{x|0≤x≤7}={x|5≤x≤7},如图1—10所示。

填空题

1、5个同学站成一排,其中某个人恰好站在排头的概率是______。  

答 案:

解 析:基本事件的总数n=5!,其中某人恰好站在排头的排法有m=4!种,所求概率为。  

2、已知关于t的二次方程t2-6tsinθ+tanθ=0(0<θ<)的两根相等,则sinθ+cosθ的值等于______。  

答 案:

解 析:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论