2025年成考高起点每日一练《数学(文史)》3月22日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知sinα=且
,则sin(α+
)的值等于()。
- A:
- B:
- C:
- D:
答 案:C
2、函数的定义域是()
- A:{x|-3≤x≤-1}
- B:{x|x≤-3或x≥-1}
- C:{x|1≤x≤3}
- D:{x|x≤1或x≥3}
答 案:D
解 析:由题可知x2-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.
3、函数y=sin(x+11)的最大值是()。
- A:11
- B:1
- C:-1
- D:-11
答 案:B
解 析:本题主要考查的知识点为三角函数的值域。 因为-1≤sin(wx+q)≤1,所以-1≤sin(x+11)≤1,故y=sin(x+11)的最大值为1。
4、二次函数y=x2+4x+1()。
- A:有最小值-3
- B:有最大值-3
- C:有最小值-6
- D:有最大值-6
答 案:A
主观题
1、求函数(x∈R)的最大值与最小值。
答 案:设sinx+cosx=t,则(sinx+cosx)2=t2,1+2sinxcosx=t2,sinxcosx=
于是转化为求
的最值。
由所设知
上为增函数,故g(t)的最大值为
最小值为
2、在△ABC中,已知AB=2,BC=1,CA=
点D,E,F分别在AB,BC,CA边上,△DEF为正三角形,记∠FEC为α,如果sinα=
求△DEF的边长。
答 案:解析:由AB=2,BC=1,CA= 得BC2=CA2=AB2,因此∠C=90°,如图所示。
因为sinA=
所以∠A=30°,于是∠b=60°。
设正△DEF边长为l,已知AB=2,sinα=
由此EC=lcosα
有图知,∠1+∠2+∠3=180°(三角形内角和);
∠3+∠4+α=180°,因为∠2-∠4=60°,所以∠1=α。
【考点指要】本题主要考查三角函数的概念、同角三角函数的关系及正弦定理,这些均是考试大纲要求掌握的重要概念,并要求能达到灵活应用的程度,此类题是在成人高考中出现频率较高的题型,
3、cos20°cos40°cos80°的值。
答 案:
4、求(1+tan10°)(1+tan35°)的值。
答 案:原式=1+tan10°+tan35°+tan10°·tan35°
填空题
1、在∆ABC中,已知cosA=,cosB=
,那么cosC=______。
答 案:
2、曲线在点(1,1)处的切线方程是______。
答 案:2x+y-3=0
解 析:本题主要考查的知识点为切线方程。
由题意,该切线斜率,又过点(1,1),所以切线方程为y-1=-2(x-1),即2x+y-3=0。
精彩评论