2025年成考高起点每日一练《数学(文史)》3月19日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知点M(-2,5),N(4,2),点P在上,且
=1:2,则点P的坐标为()
- A:
- B:(0,4)
- C:(8,2)
- D:(2,1)
答 案:B
解 析:由题意得:
2、盒中有20节电池,其中有2节是废品,现从中取3节,其中至少有一节废品的概率是()。
- A:
- B:
- C:
- D:
答 案:A
3、直线2x-y+7=0,与圆的位置关系是()
- A:相离
- B:相交但不过圆心
- C:相切
- D:相交且过圆心
答 案:C
解 析:易知圆心坐标(1,-1),圆心到直线2x-y+7=0的距离d ∵圆的半径
∴d=r,∴直线与圆相切
4、已知f(x)=ax2+b的图像经过点(1,2)且其反函数f-1(x)图像经过点(3,0),则函数f(x)的解析式是()。
- A:
- B:f(x)=-x2+3
- C:f(x)=3x2+2
- D:f(x)=x2+3
答 案:B
解 析:∵f(x)的反函数f-1(x)过点(3,0),所以f(x)又过点(3,0),所以有f(1)=2,
主观题
1、等差数列{an}的通项公式为an=3n-1,在{an}中,每相邻的两项之间插人三项,构成新的等差数列{bn}. (Ⅰ)求{bn}的通项公式; (Ⅱ)求{bn}前10项的和.
答 案: 考点本题主要考查等差数列的通项公式和前n项和公式的运用,是成人高考常见题型.
2、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P
到圆上的点的最远距离是
求椭圆的方程
答 案:由题意,设椭圆方程为 由
设P
点到椭圆上任一点的距离为 d,
则在y=-b时,
最大,即d也最大。
3、已知x+x-1=,求x2+x-2的值。
答 案:由已知,得
4、已知tan2θ=2tan2ψ+1,求cos2θ+sin2ψ的值。
答 案:由已知,得
填空题
1、在1000000张奖券中,设有1个一等奖,5个二等奖,10个三等奖,从中买一张奖券,中奖的概率是______。
答 案:
解 析:本题试验属于等可能事件的概率。n=1000000,m=16,所以买一张奖券,中奖的概率
2、函数y=2x(x+1)在x=2处的切线方程是__________.
答 案:10x-y-8=0
解 析:由函数y=2x(x+1) 知,y´=(2x2+2x)'=4x+2,则y´|x=2=10.又当x=2时,y=12,知此函数的切线过点(2,12),且斜率为10。则其切线方程为10(x-2)=y-12,即10x-y-8=0. 【考点指要】本题考查利用导数求曲线的切线方程,y=ƒ(x)在点P(x0,y0)处的导数值即为曲线y=ƒ(x)在该点处切线的斜率.
精彩评论