2025年成考高起点每日一练《数学(理)》3月19日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、函数的值域是()。
- A:(0,+∞)
- B:(-∞,+∞)
- C:(1,+∞)
- D:[1,+∞)
答 案:C
解 析:
2、已知焦点在x轴上的椭圆的焦距等于2则该椭圆上任一点P到两焦点的距里之和为()。
- A:8
- B:
- C:4
- D:
答 案:B
解 析:由题意可知a2=m,b2=4,2c=2,则,解得。a2=m-5,则该椭圆上任一点P到两焦点的距离之和为.
(答案为B)
3、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()
- A:-2
- B:-1
- C:0
- D:1
答 案:C
解 析:由题可知向量a=(2,3,m),故,解得m=0.
4、如果不共线的向量a和b有相等的长度,则(a+b)(a-b)=()
- A:0
- B:1
- C:-1
- D:2
答 案:A
解 析:(a+b)(a-b)=
主观题
1、化简: (1)
(2)
答 案:(1) (2)
2、某气象预报站天气预报的准确率为80%,计算(1)5次预报中恰有4次准确的概率; (2)5次中至少有次准确的概率.(计算结果保留两个有效数字).
答 案: 把每次预报看做一次试验,“预报结果准确”看成事件P(A)=0.8,本题就相当于在5次独立重复试验中求A恰好发生4次(或至少4次)的概率,此题属于独立重复试验,由公式来求解。 (1)n=5;p=0.8;k=4
即恰有4次准确的概率为0.41.
(2)5次至少有4次准确的概率,就是5次中恰有4次准确的概率与5次预报中都准确的概率的和,即
即至少有4次准确的概率为0.74。
3、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
关于基底{a,b,c}的分解式
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
4、当自变量为何值时,函数y=2x3-3x2-12x+21有极值,其极值为多少?
答 案:y'=6x2-6x-12=6(x-2)(x+1) 当x<-1或x>2时,y>0,当-1
填空题
1、=______。
答 案:27
解 析:
2、函数y=x4-2x2+5,x∈[-2,2]上的最小值______,最大值______。
答 案:4;13
解 析:y=x4-2x2+5,y'=4x3-4x
精彩评论