2025年成考高起点每日一练《数学(理)》3月16日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、一个袋子中装有标号分别为1,2,3,4的四个球,采用有放回的方式从袋中摸球两次,每次摸出一个球,则恰有一次摸出2号球的概率为()。
- A:
- B:
- C:
- D:
答 案:C
解 析:本题主要考查的知识点为独立重复试验的概率。 所求概率为
2、已知,则tanα等于()。
- A:
- B:
- C:
- D:
答 案:D
解 析:
3、(sinα+sinβ)2+(cosα+cosβ)2=()。
- A:
- B:
- C:
- D:
答 案:B
解 析:
4、()。
- A:1
- B:b
- C:logab
- D:logba
答 案:D
解 析:由已知,nlogba=logb(logba),logban=logb(logba), 所以an=logba。
主观题
1、计算 (1)tan5°+ cot5°- 2sec80°
(2)tan15°+cot15
(3)sin15°sin75°
答 案:(1)化切割为弦进行运算。
(2)
(3)
2、已知设△ABC的三边长为a、b、C,2sin2A=3(sin2B+sin2C)且cos2A+3cosA+3cos(B-C)=1,求证:a:b:c=:1:1。
答 案:因所证的是△ABC三边的比,所以可将题中角的关系式转化为边的关系式,需用正弦定理关于题中的余弦关系式可通过恒等变形化为正弦函数的关系式。 ∵2sin2A=3(sin2B+sin2C)…① 由正弦定理得,2a2=3(b2+c2)…②
∵cos2A+3cosA+3cos(B-C)=1
∴3[cosA+cos(B-C)]=1-cos2A.
∵A=180°-(B+C)
∴3[-cos(B+C)+cos(B-C)]=2sin2A.
由两角和与差的余弦公式得
6sinBsinB=2sin2A…③
由①③得,2sinBsinC=sin2B+sin2C.
sin2B-2sinBsinC+sin2C=0
(sinB-sinC)2=0
sinB= sinC.
由正弦定理得
∴a:b=:1
于是a:b:c=:1:1。
3、cos20°cos40°cos80°的值。
答 案:
4、已知数列{an}中,a1=2,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}前5项的和 S5
答 案:解:
填空题
1、函数y=2cosx-cos2x(x∈R)的最大值为______。
答 案:
解 析:
2、点B(4,-5)按向量a平移后的对应点B0(-4,7),则a的坐标是______。
答 案:(-8,12)
解 析:由平移公式得-4=4+a1,7=-5+a2→a1=-8,a2=12 ∴a的坐标是(-8,12)。
精彩评论